Praddeco

ELECTRICITY

The Basics

Ohm's Law - I = V/R
I - current (amperes/amps)
V - voltage (volts)
R - resistance (ohms)

Voltage: a force that pushes the current through the circuit
Resistance: friction that impedes flow of current through the circuit
Current: the actual "substance" that is flowing through the wires of the circuit (electrons)

Circuit Diagram

Scientists usually draw electric circuits using symbols:

P Paddeco

Simple Circuits

- Series circuit
- All in a row
- 1 path for electricity
- 1 light goes out and the circuit is broken
- Voltage is shared between the components
- Parallel circuit
- Many paths for electricity
- 1 light goes out and the others stay on

- Voltage is the same in all parts of the circuit (for all components)

Measuring Current

Electric current is measured in amps (A) using an ammeter connected in series in the circuit.

An Ammeter in a Circuit

Series Circuit

Parallel Circuit

Measuring Voltage

The 'electrical push' which the cell gives to the current is called the voltage. It is measured in volts (V) on a voltmeter.

Measuring Voltage

This is how to draw a voltmeter in a circuit.

Series Circuit

Parallel Circuit

Series Circuit (voltage shared)

Measuring Current

Series Circuit

Current is the same at all points in the circuit.

Parallel Circuit

Current is shared between the components.

Voltage, Current \& Power

- One Volt is a Joule per Coulomb (J/C)
- One Amp of current is one Coulomb per second ($6.24 \times 10^{\wedge 18}$ electrons/second).
- If I have one volt (J / C) and one amp (C / s), then multiplying gives Joules per second (J / s). I.e. Power: $\mathrm{J} / \mathrm{s}=$ Watts
- The formula for electrical power is:
- P (power) $=\mathrm{V}$ (voltage) xI (current)

